Rabu, 04 Desember 2013

ADSORPSI

  1. Pengertian Adsorpsi
      Adsorpsi merupakan peristiwa penyerapan suatu zat pada permukaan zat lain. Zat yang diserap disebut fase terserap (adsorbat), sedangkan zat yang menyerap disebut adsorben. Kecuali zat padat, adsorben dapat pula zat cair. Karena itu adsorpsi dapat terjadi antara : zat padat dan zat cair, zat padat dan gas, zat cair dan zat cair atau gas dan zat cair.
Adsorpsi secara umum adalah proses penggumpalan substansi terlarut yang ada dalam larutan oleh permukaan benda atau zat penyerap. Adsorpsi adalah masuknya bahan yang mengumpul dalam suatu zat padat. Keduanya sering muncul bersamaan dengan suatu proses maka ada yang menyebutnya sorpsi. Baik adsorpsi maupun absorpsi sebagai sorpsi terjadi pada tanah liat maupun padatan lainnya, namun unit operasinya dikenal sebagai adsorpsi. 


 Menurut Sukardjo bahwa molekul-molekul pada permukaan zat padat atau zat cair, mempunyai gaya tarik ke arah dalam, karena tidak ada gaya-gaya yang mengimbangi. Adanya gaya-gaya ini menyebabkan zat padat dan zat cair, mempunyai gaya adsorpsi. Adsorpsi berbeda dengan absorpsi. Pada absorpsi zat yang diserap masuk ke dalam adsorben sedang pada adsorpsi, zat yang diserap hanya pada permukaan (Sukardjo, 2002:190).
2. Jenis adsorpsi
  Adsorpsi ada dua jenis, yaitu adsorpsi fisika dan adsorpsi kimia.
 

Physisorption (adsorpsi fisika)
 

Terjadi karena gaya Van der Walls dimana ketika gaya tarik molekul antara larutan dan permukaan media lebih besar daripada gaya tarik substansi terlarut dan larutan, maka substansi terlarut akan diadsorpsi oleh permukaan media. Physisorption ini memiliki gaya tarik Van der Walls yang kekuatannya relatif kecil. Molekul terikat sangat lemah dan energi yang dilepaskan pada adsorpsi fisika relatif rendah sekitar 20 kJ/mol.
Contoh : adsorpsi oleh arang aktif. Aktivasi arang aktif pada temperatur yang tinggi akan menghasilkan struktur berpori dan luas permukaan adsorpsi yang besar. Semakin besar luas permukaan, maka semakin banyak substansi terlarut yang melekat pada permukaan media adsorpsi.
 

Chemisorption (adsorpsi kimia)
 

Chemisorption terjadi ketika terbentuknya ikatan kimia antara substansi terlarut dalam larutan dengan molekul dalam media. Chemisorpsi terjadi diawali dengan adsorpsi fisik, yaitu partikel-partikel adsorbat mendekat ke permukaan adsorben melalui gaya Van der Walls atau melalui ikatan hidrogen. Dalam adsorpsi kimia partikel melekat pada permukaan dengan membentuk ikatan kimia (biasanya ikatan kovalen), dan cenderung mencari tempat yang memaksimumkan bilangan koordinasi dengan substrat. Contoh : Ion exchange.
  3. Perbedaan adsorpsi fisika dan kimia dapat dilihat pada tabel 1.
Adsorpsi fisika
Adsorpsi kimia
Molekul terikat pada adsorben oleh gaya Van der Walls Molekul terikat pada adsorben oleh ikatan kimia
Mempunyai entalpi reaksi -4 sampai     -40 kJ/mol Mempunyai entalpi reaksi -40 sampai 800kJ/mol
Dapat membentuk lapisan multilayer Membentuk lapisan Monolayer
Adsorpsi hanya terjadi pada suhu dibawah titik didih adsorbat Adsorpsi dapat terjadi pada suhu tinggi
Jumlah adsorpsi pada permukaan merupakan fungsi adsorbat Jumlah adsorpsi pada permukaan merupakan karakteristik adsorben dan adsorbat
Tidak melibatkan energi aktivasi tertentu Melibatan energi aktivasi tertentu
Bersifat tidak spesifik Bersifat sangat spesifik

 
4. Faktor-faktor yang mempengaruhi Adsorpsi
Faktor-faktor yang mempengaruhi adsorpsi adalah sebagai berikut:
a. Waktu Kontak
Waktu kontak merupakan suatu hal yang sangat menentukan dalam proses adsorpsi. Waktu kontak memungkinkan proses difusi dan penempelan molekul adsorbat berlangsung lebih baik.
Karakteristik Adsorben
Ukuran partikel merupakan syarat yang penting dari suatu arang aktif untuk digunakan sebagai adsorben. Ukuran partikel arang mempengaruhi kecepatan dimana adsorpsi terjadi. Kecepatan adsorpsi meningkat dengan menurunnya ukuran partikel.

b. Luas Permukaan
Semakin luas permukaan adsorben, semakin banyak adsorbat yang diserap, sehingga proses adsorpsi dapat semakin efektif. Semakin kecil ukuran diameter adsorben maka semakin luas permukaannya. Kapasitas adsorpsi total dari suatu adsorbat tergantung pada luas permukaan total adsorbennya.

c. Kelarutan Adsorbat
Agar adsorpsi dapat terjadi, suatu molekul harus terpisah dari larutan. Senyawa yang mudah larut mempunyai afinitas yang kuat untuk larutannya dan karenanya lebih sukar untuk teradsorpsi dibandingkan senyawa yang sukar larut. Akan tetapi ada perkeculian karena banyak senyawa yang dengan kelarutan rendah sukar diadsorpsi, sedangkan beberapa senyawa yang sangat mudah larut diadsorpsi dengan mudah. Usaha-usaha untuk menemukan hubungan kuantitatif antara kemampuan adsorpsi dengan kelarutan hanya sedikit yang berhasil.

d. Ukuran Molekul Adsorbat
Ukuran molekul adsorbat benar-benar penting dalam proses adsorpsi ketika molekul masuk ke dalam mikropori suatu partikel arang untuk diserap. Adsorpsi paling kuat ketika ukuran pori-pori adsorben cukup besar sehingga memungkinkan molekul adsorbat untuk masuk.

e.pH
pH di mana proses adsorpsi terjadi menunjukkan pengaruh yang besar terhadap adsorpsi itu sendiri. Hal ini dikarenakan ion hidrogen sendiri diadsorpsi dengan kuat, sebagian karena pH mempengaruhi ionisasi dan karenanya juga mempengaruhi adsorpsi dari beberapa senyawa. Asam organik lebih mudah diadsorpsi pada pH rendah, sedangkan adsorpsi basa organik terjadi dengan mudah pada pH tinggi. pH optimum untuk kebanyakan proses adsorpsi harus ditentukan dengan uji laboratorium.

f. Temperatur
Temperatur di mana proses adsorpsi terjadi akan mempengaruhi kecepatan dan jumlah adsorpsi yang terjadi. Kecepatan adsorpsi meningkat dengan meningkatnya temperatur, dan menurun dengan menurunnya temperatur. Namun demikian, ketika adsorpsi merupakan proses eksoterm, derajad adsorpsi meningkat pada suhu rendah dan akan menurun pada suhu yang lebih tinggi (Srining Peni, 2001: 23).

       
5. Isoterm Adsorpsi
       Isoterm adsorpsi adalah adsorpsi yang menggambarkan hubungan antara zat yang teradsorpsi oleh adsorben dengan tekanan atau konsentrasi pada keadaan kesetimbangan dan temperatur konstan. Persamaan yang sering digunakan untuk menggambarkan data percobaan isoterm telah dikembangkan oleh 1) Freundlich, 2) Langmuir, dan 3) Brunauer, Emmett, dan Teller (Isoterm BET) (Tchobanoglos et al., 1991: 318).
Dalam sistem cair, isoterm adsorpsi menyatakan variasi adsorben dan adsorbat yang terjadi pada suhu konstan. Pada kondisi kesetimbangan terjadi distribusi larutan antara fasa cair dan fasa padat. Rasio dari distribusi tersebut merupakan fungsi konsentrasi dan larutan. Pada umumnya jumlah material yang diserap per satuan berat dari adsorben bertambah seiring dengan bertambahnya konsentrasi walaupun hal itu tidak selalu berbanding lurus.

Minggu, 01 Desember 2013

Pengertian Kimia

     Kimia (bahasa Inggris: chemistry) adalah ilmu yang mempelajari tentang komposisi dan struktur materi termasuk juga perubahannya. Kimia sangat penting dalam kehidupan sehari-hari. Banyak peralatan sehari-hari yang menggunakan prinsip kimia. Mulai dari popok bayi, layar komputer, hingga pewarna batik semuanya menggunakan prinsip kimia. Pada dasarnya ilmu kimia mempelajari makroskopik dan mikroskopik. Makroskopik adalah segala sesuatu yang bisa dilihat dan diamati dengan mata. Sedangkan mikroskopik adalah sesuatu yang tidak dapat dilihat tetapi bisa dibuktikan di laboratorium.
      Kimia dibedakan menjadi dua periode yaitu kimia klasik dan kimia modern. Kimia klasik atau kimia kuno dihitung mulai dari penemuan konsep awal kimia sejak zaman mesir kuno. Sedangkan kimia modern dihitung setelah penemuan teori atom oleh John Dalton (1766-1844) sampai saat ini. Yang membedakan antara kedua periode tersebut adalah metode pembuktian kimia. Pada kimia modern, pembuktian kimia didasarkan pada hasil percobaan.
      Orang yang yang membidangi ilmu kimia disebut kimiawan (bahasa Inggris: chemist). Kimiawan bertugas melakukan penelitian kimia untuk menemukan materi ataupun prinsip baru sehingga dapat membatu kehidupan manusia.

Ilmu kimia dibagi menjadi beberapa cabang ilmu antara lain: biokimia, nanokimia, kimia fisika, teknik kimia, dan lain-lain. Biokimia membahas tentang materi beserta prosesnya yang terjadi di dalam tubuh makhluk hidup. Nanokimia membahas tentang pengembangan teknologi nano seperti perangkat keras yang ada di komputer. Kimia fisika mempelajari tentang sifat-sifat fisika yang dimiliki oleh suatu material. Sedangkan teknik kimia mempelajari tentang aplikasi kimia di bidang industri atau lazim disebut industrinisasi kimia.
      Pembuktian dalam ilmu kimia tidak terlepas dari percobaan. Percobaan ilmiah merupakan fondasi utama perkembangan ilmu kimia. Percobaan kimia kimia umumnya dilakukan di dalam laboratorium kimia.

PEMBUATAN LARUTAN DAN STANDARISASINYA

A.    Pendahuluan
1. Latar Belakang
Ketika mempelajari kimia dikenal adanya larutan. Larutan  pada dasarnya  adalah  fase  yang  homogen  yang  mengandung  lebih  dari  satu komponen.  Komponen  yang  terdapat  dalam  jumlah  yang  besar disebut pelarut atau solvent, sedang komponen yang  terdapat dalam  jumlah yang kecil  disebut  zat  terlarut  atau  solute.  Konsentrasi  suatu  larutan  didefinisikan sebagai jumlah solute yang ada dalam sejumlah larutan atau pelarut.  Konsentrasi  dapat  dinyatakan  dalam  beberapa  cara, antara  lain molaritas,  molalitas,  normalitas  dan  sebagainya. Molaritas  yaitu  jumlah mol solute dalam satu  liter  larutan, molalitas yaitu  jumlah mol solute per 1000  gram  pelarut  sedangkan  normalitas  yaitu  jumlah  gram  ekuivalen solute dalam 1 liter larutan.
Dalam  ilmu  kimia,  pengertian  larutan  ini  sangat  penting  karena hampir  semua  reaksi  kimia  terjadi  dalam  bentuk  larutan.  Larutan dapat didefinisikan sebagai campuran serba sama dari dua komponen atau lebih yang  saling  berdiri  sendiri. Disebut  campuran  karena  terdapat molekul-molekul,  atom-atom  atau  ion-ion  dari  dua  zat  atau  lebih.  Larutan dikatakan  homogen  apabila  campuran  zat  tersebut  komponen komponen penyusunnya  tidak  dapat  dibedakan  satu  dengan  yang  lainnya lagi. Misalnya larutan gula dengan air dimana kita tidak dapat lagi melihat dari bentuk gulanya, hal ini karena larutan sudah tercampur secara homogen.
Dalam  pembuatan  larutan  dengan  konsentrasi  tertentu  sering dihasilkan konsentrasi yang tidak tepat dengan yang diinginkan, untuk itu diperlukan  praktikum.dan  pada  praktikum  acara  ini  akan dilaksanakan acara  pembuatan  dan  standarisasinya.  Dalam  hal  ini  adalah membuat larutan 0,1 N HCL dan standarisasi HCL serta menentukan kadar Na2CO3 dengan HCL. Dalam pembuatan  larutan harus dilakukan seteliti mungkin dan menggunakan perhitungan yang tepat, sehingga hasil yang didapatkan sesuai  dengan  yang  diharapkan.  Untuk  mengetahui  konsentrasi sebenarnya  dari  larutan  yang  dihasilkan  maka  dilakukan standarisasi.
Standarisasi  pada  percobaan  ini menggunakan metode  titrasi  asam  basa yaitu proses penambahan larutan standar dengan larutan asam. Keterkaitan  praktikum  kimia  dalam  acara  ini  dengan  pertanian. Yaitu  digunakannya  senyawa-senyawa  kimia  sebagai pemberantas  hama yang  lebih  dikenal  dengan  pestisida.  Pestisida  sebagian  besar berbentuk larutan. Selain sebagai pestisida juga digunakan sebagai pupuk. Meskipun denikian,  penggunaan  larutan  kimia  sebagai  pupuk  perlu diperhatikan penggunaannya. Penggunaan pupuk harus sesuai dengan kadar yang telah ditentukan  agar  dapat mendukung  sektor  pertanian  dalam memproduksi hasil-hasilnya.
2. Tujuan Praktikum
Tujuan dari raktikum acara 1 ini adalah:
  • Membuat larutan 0,1 N HCl
  • Standardisasi HCl dengan Borax (Na2B4O7.10H2O)
  • Penentuan kadar Na2CO3 dengan HCl
3. Waktu dan Tempat
Praktikum acara 1 dilaksanakan pada hari Rabu, tanggal 24 November 2010 pada pukul 11.00 WIB di Laboratorium Biologi Tanah Fakultas Pertanian Universitas Sebelas Maret Surakarta.
B.    Tinjauan Pustaka
 Larutan  merupakan  campuran  karena  terdiri  dari  dua  bahan  dan disebut homogen karena sifat-sifatnya sama di sebuah cairan. Karena larutan adalah  campuran molekul biasanya molekul-molekul pelarut  agak berjauhan dalam  larutan  bila  dibandingkan  dalam  larutan  murni. Gaya tarik inter molekul  diantara molekul  tidak  sejenis menyebabkan  pelepasan  energi dan entalpi  menurun.  Larutan  pada  dasarnya  adalah  campuran  homogen, dapat berupa  gas,  zat  cair  maupun  padatan.  Menyebabkan  komponen koponen dalam  larutan  saja  tidak  cukup memberikan  larutan  secara  lengkap. Banyak cara  untuk  memberikan  konsentrasi  larutan  yang  semuanya menyatakan kuantitas zat terlarut dalam kuantitas pelarut (atau larutan). Dengan demikian setiap  sistem  konsentrasi  menyatakan  satuan  yang  digunakan  zat terlarut, kuantitas zat terlarut pelarut (Anonim,2007).
Larutan adalah campuran dari dua atau lebih zat. Larutan dapat terjadi karena komponen larutan terdispresi menjadi atom atau molekul atau lain-lain saling  bercampur  baur.  Larutan  dapat  berupa  padat,  cair,  atau  gas. Namun lazimnya  yang  disebut  larutan  adalah  zat  cair.  Larutan  terdiri  dari dua komponen yaitu pelarut (solvent) dan zat pelarut (solut). Jumlah pelarut lebih banyak daripada zat terlarut (Anonim, 2007)
Dalam pembuatan larutan dengan konsentrasi tertentu sering dihasilkan konsentrasi yang tidak kita inginkan. Untuk mengetahui konsentrasi sebenarnya perlu dilakukan standarisasi. Standarisasi sering dilakukan dengan titrasi (Harjadi, 2000).
Komponen dan sifat fase cairan baru ini, yaitu larutan berbeda dari air murni. Larutan adalah campuran karena ini terdiri dari 2 zat atau lebih. Larutan ini homogen karena sifatnya di seluruh cairan. Campuran air dan pasir adalah campuran heterogen larutan adalah campuran molekul (atom atau ion dalam beberapa hal), biasanya molekul pelarut agar berjauhan dalam larutan dibanding dalam larutan murni (Petrucci, 1992).
Setiap cara yang melokalisir titik dimana pH berubah sangat cepat dapat digunakan untuk mendeteksi titik ekuivalen dari suatu titrasi, yaitu : titik dimana jumlah ekuivalen dari basa dan asam telah tercampur. Salah satu cara untuk menentukan titik ekuivalen adalah dengan menggunakan zat warna yang mempunyai warna yang sensitif terhadap konsentrasi hidrogen. Zat warna ini dapat digunakan sebagai indikator dan dapat memberikan keterangan tentang PH suatu larutan (Haryono, 2001).
Titrasi  adalah  cara  analisis  untuk  menghitung  jumlah  cairan  yang dibutuhkan  untuk  bereaksi  dengan  sejumlah  cairan  lain. Dalam  satu cairan yang  mengandung  reaktan  ditempatkan  dalam  buret,  sebuah  tabung  yang panjang  salah  satu ujungnya  terdapat kran  (stopkok) dengan  skala milimeter dan  sepersepuluh milimeter.  Cairan  di  dalam  buret  disebut  titran dan  pada titran  ditambah  indikator,  perubahan  warna  indikator  menandai habisnya titrasi (Wahyudi, 2000).
Reaksi penetralan atau asidimetri dan alkalimetri adalah salah satu dari empat golongan utama dalam penggolongan reaksi dalam analisis titrimetri. Asidi alkalimetri ini melibatkan titrasi basa bebas atau basa yang terbentuk karena hidrolisis garam yang berasal dari asam lemah, dengan suatu standar (asidimetri) dan titrasi asam bebas yang terbentuk dari hidrolisis garam yang berasal dari basa lemah, dengan suatu basa standar (alkali metri). Reaksi-reaksi ini melibatkan senyawa ion hidrogen dan ion hidroksida untuk membentuk air (Bassett, 1994).
Analisis volumetri juga dikenal sebagai titrimetri, di mana zat dibiarkan bereaksi dengan zat yang lain yang konsentrasinya diketahui dan dialirkan dari buret dalam bentuk larutan. Konsentrasi larutan yang tidak diketahui (analit) kemudian dihitung. Syaratnya adalah reaksi harus berlangsung secara cepat, reaksi berlangsung kuantitatif dan tidak ada reaksi samping (Khopkar, 1990).
Dalam menguji suatu reaksi untuk menetapkan apakah reaksi itu dapat digunakan untuk suatu titrasi, pembuatan suatu kurva titrasi akan membantu pemahaman untuk titrasi asam basa suatu kurva titrasi terdiri dari suatu alur pH atau pOH versus ml titran. Kurva semacam itu membantu dalam mempertimbangkan kelayakan suatu titrasi dan dalam memilih indikator yang tepat (Underwood, 1999).
A.    Alat, Bahan, dan Cara Kerja
  1. Alat
    1. gelas ukur
    2. labu ukur
    3. Erlenmeyer
    4. Pipet
    5. Pipet
    6. Statif
    7. Corong
    8. Gelas piala
    9. kaca arloji
  2. Bahan
    1. Larutan HCl
    2. Larutan Na2B4O7.10H2O 0,4gr
    3. Larutan Na2CO3 0,75gr
    4. Indikator MO (Methyl Orange)
    5. Aquadest
  3. Cara Kerja
a. Pembuatan larutan HCl 0,1 N
1)      Memasukan x ml HCl kedalam labu  100 ml
2)      Menuangkan aquades kedalam labu ukur sampai batas garis.
3)      Mengocok larutan tersebut.
4)      Memindahkan larutan HCl yang sudah dibuat kedalam Erlenmeyer.
b. Standarisai 0,1 N HCl dengan borax.
1)      Mengambil 0,404 gr borax murni.
2)      Memasukan borax kedalam labu erlenmeyer dan melarutkan dengan 5 ml akuades + 3 tetes indikator MO.
3)      Mentitrasi dengan HCl sampai terjadi perubahan warna kemudian menghitung N HCl.
c. Menentuan kadar Na2CO3
1)      Menimbang 0,75 gr Na2CO3 dan memasukan kedalam labu takar 5 ml kemudian memberi air sampai tanda.
2)      Mengambil 10 ml kemudian memasukan kedalam Erlenmeyer kemudian menambahkan indikator MO 3 tetes.
3)      Mentitrasi dengan HCl yang telah dibuat, kemudian menentukan kadar Na2­CO3.
D.    Hasil dan Analisis Pengamatan
  1. Hasil Pengamatan
Tabel 1.1 Pembuata larutan HCl 0,1 N
V HCl (ml)
Bj HCl (gr/ml)
Kadar HCl (%)
X ml HCl
1
1,19
37
0,83

Tabel 1.2 Standarisasi 0,1 N HCl dengan Borax (Na2B4O7. 10 H2O)
m Borax (gr)
V HCl (ml)
Warna
Awal
Proses
Akhir
0,4
41,3
Kuning
Orange
Merah Muda

Tabel 1.3 Penentuan kadar Na2CO3
V HCl (ml)
Kadar Na2CO3 (%)
Warna
Awal
Proses
Akhir
0,7
4,95
Kuning
Orange
Merah Muda


E. Pembahasan

1. Pembahasan
Larutan terdiri atas dua komponen penting yaitu pelarut (solvent) yang memiliki proporsi lebih besar dan zat terlarut (solut) yang proporsinya lebih kecil. Larutan pada dasarnya adalah campuran yang homogen dapat berupa gas, cair, maupun padatan. Pada pembuatan larutan 0,1 N HCl pada percobaan ini dicari 0,1 N HCl dengan 0,83 ml HCl pekat, namun dalam percoban diperoleh 0,05 N HCl dengan 0,83 ml HCl. Mungkin ini terjadi karena faktor relatif misalnya pada penambahan aquadest dalam HCl sampai tanda garis didalam labu takar melebihi garis, sehingga seharusnya konsentrasi HCl 0,1 N yang dibutuhkan menjadi lebih sedikit karena HCl nya lebih encer maka N HCl didapatkan 0,05 N. Besarnya volume N HCl, berat jenis HCl dan kadar dari HCl pekat (%) mempengaruhi penentuan volume HCl pekat yang dibutuhkan.
Standarisasi 0,1 N HCl dengan Borax (Na2B4O7.10H2O) dilakukan dengan cara titrasi. Indikator MO digunakan dalam titrasi dan tanda titrasi terjadi ialah terjadi perubahan warna yang kemudian titrasi dapat dihentikan, kemudian dapat dihitung normalitas HCl adalah 0,05 N. Dalam percobaan didapati warna pada awal adalah kuning, kemudian pada proses warna berubah orange, dan diakhir menghasilkan warna merah muda. Dalam proses titrasi ini hanya dibutuhkkan 41,3 ml HCl untuk mencapai titik ekuivalen.
Penentuan kadar Na2CO3 juga dilakukan dengan metode titrasi. Untuk kadar Na2CO3 dalam percobaan diperoleh 4,95% . perubahan warna yang terjadi adalah kuning pada warna awal, kemudian berubah menjadi orange pada proses, yang kemudian didapat warna merah muda pada warna akhir. Besar kadar Na2CO3 dipengaruhi oleh N HCl, volume HCl, BM Na2CO3, serta masa Na2CO3. Perubahan warna dari kuning menjadi merah muda telah terjadi pada volume HCl 0,7 ml. hal ini terjadi mungkin terjadi karena penetesan HCl terlalu cepat sehingga perubahan pun cepat terjadi.